
The UML4SOA Profile

Philip Mayer, Nora Koch, Andreas Schroeder, Alexander Knapp
Technical Report, LMU Muenchen, 2010

2

Abstract

This document describes UML4SOA, a profile for the Unified Modeling Lan-
guage (UML) [OMG10b] which extends the UML by providing the possibility
for behavioural specifications of services, focussing on service orchestrations.
UML4SOA is an easy-to-use, conservative extension to the UML for modelling
service orchestrations on a high level of abstraction, and allows a fully auto-
mated, model-driven approach for transforming orchestrations down to code. It
is based on the upcoming OMG standard SoaML [OMG09].

Metadata

� Current Version: 3.0

� Date: 2010-10-02

� Authors: Philip Mayer, Nora Koch, Andreas Schroeder, Alexander Knapp

License

Common Public License Version 1.0 (CPL).

Acknowledgements

This work has been partially supported by the EC project Sensoria, IST-2005-
016004.

3

4

Contents

1 Extending UML for Service Behaviour 7
1.1 Motivation . 7
1.2 Case Study . 9
1.3 Modelling the Case Study . 10
1.4 Requirements for UML4SOA . 10

1.4.1 Communication Actions 10
1.4.2 Long-Running Transactions 12
1.4.3 Self-Descriptions . 14

2 The UML4SOA Profile 17
2.1 Design Considerations . 17

2.1.1 Service Interactions and Partners 18
2.1.2 Events and Compensation 19
2.1.3 Self-Describing Protocols 20
2.1.4 Data Handling . 21

2.2 The UML4SOA Meta-Model . 23
2.2.1 Structuring Elements . 23
2.2.2 Pins . 33
2.2.3 Communication Actions 36
2.2.4 Protocols . 41

2.3 From Meta-Model to Profile . 46
2.4 Data Handling . 50

2.4.1 Syntax Used . 51
2.4.2 Grammar . 52
2.4.3 Using the data language 55

2.5 Changes to the UML . 57
2.6 UML4SOA/Open and UML4SOA/Strict 58
2.7 Lifecycle Management . 60

3 Modelling Examples 63
3.1 Modelling the eUniversity Case Study 63
3.2 Other Examples . 67

4 Summary 69

5

6 CONTENTS

Chapter 1

Extending UML for Service
Behaviour

The Unified Modeling Language (UML) [OMG10b] is a well-known and ma-
ture language for modelling software systems with support ranging from re-
quirement modelling to structural overviews of a system down to behavioural
specifications of individual components. However, UML has been designed with
object-oriented systems in mind, thus native support and top-level constructs
for service-oriented computing such as participants in a SOA, modelling service
communication, and compensation support are not included. As a consequence,
modelling SOA systems with plain UML requires the introduction of technical
helper constructs, which degrades usability and readability of the models.

In this chapter, we therefore introduce a UML extension for SOAs — called
the UML4SOA profile — which is a high-level domain-specific language for
modelling the behaviour of services, service orchestrations, and service proto-
cols. For modelling the structural aspects of services, we build on the upcoming
OMG standard SoaML [OMG09]. One of the main goals of UML4SOA is mini-
malism and conciseness: service engineers should have to provide only as much
information as necessary for the generation of code, and at the same time as
little as possible in order to keep diagrams readable.

The Unified Modeling Language Infrastructure [OMG10a] describes several
ways of extending the UML for specific modelling purposes, among them be-
ing profiles, a lightweight mechanism of defining domain-specific modelling lan-
guages on top of the UML, which we will adopt here. In the following, we
describe why a profile for behavioural SOA modelling on top of the UML is
desirable before moving on to the description of the profile in the next chapter.

1.1 Motivation

Behavioural modelling of services and service orchestrations has several require-
ments on a (graphical) modelling language; in particular, the following three

7

8 CHAPTER 1. EXTENDING UML FOR SERVICE BEHAVIOUR

concepts — first-level citizens of a SOA system — should be supported:

� Communication and Partners. Services are inherently based on a net-
worked architecture, i.e. communication between services is a key re-
quirement for a working SOA-based system. Communication primitives
for sending and receiving calls must thus be supported in a domain-
specific SOA language; furthermore, specification of communication part-
ners should be possible in a straightforward way.

� Long-Running Transactions. A service, and in particular a service orches-
tration may represent a business transaction and thus potentially run for
a long time. This has various requirements for the modelling language: It
must be possible to query the transaction for status updates; it must be
possible to handle problems occurring during the transactions, and finally
successfully completed transactions might need to be undone due to later
failures.

� Self-Descriptions. Part of the appeal of service-oriented computing is the
focus on a clear self-description of each component in the SOA. Regarding
the behaviour, a specification of the protocol a service provides or requires
is key to enabling quick and confident assembly of SOAs.

UML already includes several ways of specifying the behaviour of software
systems which we can extend for modelling service behaviour. In particular,
the following two model elements and accompanying diagram types are a good
match for modelling SOA behaviour:

� Activities. In UML, activities are used for modelling the behaviour of a
software component based on a workflow-like paradigm. Workflows are a
concept which is also common outside of software modelling; in particu-
lar, an interesting area are business processes as they closely match the
abstraction level of SOAs. We use activities as the basic mechanism for
specifying service and service orchestration behaviour.

� State Charts. The UML distinguishes between behavioural and protocol
state machines; the first being used to model element behaviour, the sec-
ond for describing the behaviour of a protocol. As communication is a key
aspect of services and service orchestrations, modelling the protocol of a
service is important to be able to identify matching service implementa-
tions. We therefore use protocol state machines, with a minimal extension
to be able to model observed operation calls, in addition to activity mod-
elling for specifying the required or provided protocol of a service.

Attempting to model services using these two UML elements and diagrams
while considering the three key aspects of SOA systems discussed above shows
several important shortcomings of the UML. We consider a case study from the
domain of computer-assisted university management as an example for these
problems.

1.2. CASE STUDY 9

1.2 Case Study

The administration of a university is a complicated task. Student applications,
enrolment, course management, theses, and examination management all pose
individual problems and, in general, a lot of paperwork. Nowadays, many of
these tasks can be and are being automated. As universities are often large
organisations with autonomous sub-organisations, a promising approach for this
is the use of SOA-based software, in which the individual parts of a university
as well as (external) students can work together with respective back- and front-
ends of a web-based system.

To investigate the problem of developing SOA-based university management
systems, the Sensoria project includes a case study based on a set of university
scenarios that make use of the specific features of SOAs [H0̈7]. In particular, we
consider eUniversities, i.e., universities in which at least all of the paperwork, if
not the courses themselves, are handled online.

The chosen scenario here is the problem of Thesis Management. In this
scenario, we have considered the management of a student thesis (bachelor,
master, or diploma) from the initial announcement to the final grading.

Tutor Student

Graduation Service

Blackboard

Examination Office

Figure 1.1: eUniversity Case Study: Overview

The scenario consists of six partners and computing systems working to-
gether. As shown in figure 1.1, a tutor (left) first provides a new thesis proposal
— bachelor, master, or diploma — to a central server (middle), which distributes
it to a university-wide blackboard (bottom centre) to inform students of this
opportunity. Once a student (right) decides to pick up a thesis, the central
server starts the thesis, informing both the examination office (bottom right),
and registering the student for the graduation ceremony (bottom left).

While the thesis is in progress, the student may provide updates, which the
tutor may retrieve. Once the thesis is declared to be finished, an assessment is

10 CHAPTER 1. EXTENDING UML FOR SERVICE BEHAVIOUR

requested from the tutor. If the assessment is positive, the examination office is
instructed to issue the corresponding certificates. If not, the examination office
is informed of the problem, and the graduation service needs to unregister the
student from the graduation ceremony.

1.3 Modelling the Case Study

The structural aspects of the case study, modelled using UML and SoaML, can
be seen in figure 1.2. As noted above, UML4SOA is concerned with behaviour.
There are several entities in figure 1.2 for which we might want to specify be-
haviour. First of all, there is the central participant ThesisManagement, which
is a service orchestration for which the workflow might be specified. Secondly,
the participant contains service and request ports at which services are provided
and required, their interfaces being specified as�ServiceInterface�s. For these
interfaces, the protocol may be specified as a state chart. Finally, the services
required by the orchestration have their own behaviour which may be imple-
mented by external means, or may be modelled using UML or UML4SOA as
well.

1.4 Requirements for UML4SOA

As an example for the three requirements of modelling SOA systems given above,
we model the behaviour of the participant ThesisManagement and its required
and provided protocols. This example will also be used in the remainder of this
document.

1.4.1 Communication Actions

The first requirement is the ability to specify communications in-between ser-
vices. The ThesisManagement orchestration, for example, is contacted by a
student accepting a thesis, subsequently registering this thesis with the exam-
ination office. Modelling this sequence as an activity looks like the diagram
shown in figure 1.3.

The first action in the figure is an UML AcceptEventAction or subclass
thereof. It identifies a point in the workflow where the process waits for an
incoming event or operation call. The result of the call is placed in an output
pin, which is denoted with an arrow leading away from the action. The second
action in the figure is an UML InvocationAction or subclass, and shows that
the process sends out an event or operation call. There are several problems
with modelling service communication in this style:

� In UML, there is no graphical distinction between the various subclasses
of AcceptEventAction, and — even worse — no distinction between an
InvocationAction and a generic action. This requires a description such
as the one given above to precisely define the semantics of the diagram. A

1.4. REQUIREMENTS FOR UML4SOA 11

Figure 1.2: eUniversity Case Study: Static Model

12 CHAPTER 1. EXTENDING UML FOR SERVICE BEHAVIOUR

Figure 1.3: eUniversity Case Study: Communications

better way would be to use precisely specified symbols or tags to identify
a receiving, sending, or replying action in the sense of a service communi-
cation.

� Each of the operations referred to by an action (and denoted in the body)
are part of a ServiceInterface attached to a service- or request port,
specifying the port on which an event or operation is expected or sent
out. This way of specifying a port is rather indirect and not visible in the
diagram, which does not lay well with the fact that partner services are
a first-level concept in a SOA. Furthermore, there is no way of specifying
which port is to be used if several ports share one ServiceInterface.
Thus, specifying the port as part of an action would greatly increase read-
ability of the model and also allow for more precise specifications.

� Finally, standard input- and output-pins are used to denote data to be
received or sent. In the case of an AcceptEventAction, an output pin is
used as the data is a result of the action; in the case of an InvocationAc-

tion, an input is used as the data is used in the action. When considering
service calls, however, another intuition is possible: Data received in the
process is input data, and data sent is output data. A different notation
for data sent and received in a service context can clarify the intuition in
use.

We shall come back to these three problems in the next chapter, where we
define our UML profile.

1.4.2 Long-Running Transactions

The second requirement discussed above is support for long-running transac-
tions. Services and, in particular, service orchestrations may be used to specify
business or technical processes which potentially run a long time. There should
be specific support for such processes in the modelling language; in particular,
a long-running transaction may run into problems which need to be handled; it
may need to be queried for status updates, and it may need to be rolled back
in case of subsequent errors.

1.4. REQUIREMENTS FOR UML4SOA 13

Figure 1.4: eUniversity Case Study: Long-Running Transactions

Consider figure 1.4 which contains a plain UML activity diagram which
models two different part of the eUniversity case study. In the upper part, the
bootstrapping of the thesis is modelled, in which a student has already accepted
a thesis topic and the necessary messages are sent out to register this informa-
tion. This initialisation might later need to be rolled back (compensated), for
example if the student has already been registered for a graduation ceremony.
In the lower part, the thesis is in progress. The student provides updates until
he is finished, and additionally — and concurrently — the tutor might ask for
the current status. Again, there are several problems involved in the figure.

� Firstly, the behaviour for rolling back the main activity later cannot be
attached to the activity itself — it must be placed at the point where the
rollback(s) takes place and therefore a different place than expected in the
diagram. A better way would be associating rollback actions directly with
the element to be undone.

� Secondly, modelling concurrent behaviour which might occur multiple
times — such as the tutor requesting the status — is difficult to model
in UML. The status requests are in fact optional, which is enabled by
the interrupting edge leaving the interruptible activity region. Needless

14 CHAPTER 1. EXTENDING UML FOR SERVICE BEHAVIOUR

to say, this is not very intuitive to write and read; a better separation
between the main behaviour and events such as the status updates might
be appropriate.

UML4SOA addresses these concerns as discussed in the next chapter.

1.4.3 Self-Descriptions

Most of the basic definitions of services include a notion of self-description,
i.e. the ability of a service to describe, more or less completely, how it can be
invoked. The SoaML model for the eUniversity case study shown in figure 1.2
(page 11) already addresses the static aspect of such self-description: The main
participant provides two services through the �Service� ports whose opera-
tions are given as part of the StudentServiceInterface and the TutorSer-

viceInterface, and requires two services through its �Request� ports whose
operations are given in their respective interfaces. While these descriptions are
required as the basis for service interactions, the actual protocol of a provided
or required service is not yet specified.

Figure 1.5: eUniversity Case Study: Protocol

UML Protocol State Machines (PrSMs) can be used for this purpose; in our
case, they are attached to the types of the SoaML service and request ports, i.e.,
the ServiceInterfaces. A protocol state machine in UML may contain states
and (protocol) transitions; the latter of which may contain triggers. An example
for a standard UML protocol state machine for the Tutor ServiceInterface

is shown in figure 1.5.

In this figure, two types of events are used: acceptTopic, updateStatus
and the first finished transition are based on ReceiveOperationEvent trig-
gers, while the second finished transition is based on a SendOperationEvent

trigger. There are two problems associated with this diagram.

First, the fact that the first three transitions actually use a ReceiveOper-

ationEvent, and the last an SendOperationEvent is not visible in the figure,
degrading readability and hampering the comparison with the actual service
behaviour (which needs to fulfil this protocol).

1.4. REQUIREMENTS FOR UML4SOA 15

Second, the finished transition is not legal in the standard definition of
protocol state machines. Although it only observes an event, this event is not
targeted at an operation implemented by the classifier the PrSM is attached to,
but rather by a required interface of the classifier. However, as we believe that
the observation of calls to external services are an important aspect of service
specifications, this ability should be added.

Finally, in the interest of ease of modelling and readability, it is again desir-
able to have a special notation for service-related communication.

Due to the shortcomings discussed above, modelling service behaviour and
protocols with plain UML is a cumbersome task. At the same time, the resulting
UML models are difficult to read and translate into executable code. Thus,
we have developed the UML4SOA profile and meta-model which adds specific
support for services, service orchestrations and service protocols to the UML.

16 CHAPTER 1. EXTENDING UML FOR SERVICE BEHAVIOUR

Chapter 2

The UML4SOA Profile

This chapter introduces the UML4SOA profile, a domain-specific, graphical no-
tation for modelling service behaviour and service protocols. Extending the
UML is possible via several mechanisms, among them MOF meta-model exten-
sions and UML profiles. Both mechanisms can also be combined, an approach
which has been used for UML4SOA as well.

In section 2.1, we discuss the design decisions behind the profile, introducing
— on a high level — the concepts UML4SOA contributes to the UML. In sec-
tion 2.2, we define the meta-model in a MOF modelling style. Mapping of this
meta-model to a UML profile takes place in section 2.3. Data handling in UML-
4SOA is discussed in 2.4. We discuss the difference between UML4SOA/Open
and /Strict in section 2.6, and finally talk about life cycle management in sec-
tion 2.7.

2.1 Design Considerations

The design of a meta-model for behavioural service specifications requires spe-
cific support for the three concepts communication and partners, long-running
transactions, and self-descriptions already introduced in chapter 1, which we
shall revisit in this section, discussing how UML4SOA addresses these issues.

Furthermore, an important point in specifying service behaviour is data
handling, in particular in service orchestrations: Data must be received, might
need to be manipulated, and then passed on. Although the UML defines a set of
actions for explicitly dealing with data, a textual DSL for data handling greatly
simplifies this task for developers.

We begin with defining special support for service communication in activi-
ties in section 2.1.1, discuss long-running transactions in section 2.1.2, introduce
self-descriptions as protocols in section 2.1.3, and finally discuss data handling
in section 2.1.4.

17

18 CHAPTER 2. THE UML4SOA PROFILE

2.1.1 Service Interactions and Partners

In section 1.4.1, we have noted that although using subclasses of the UML Invo-

cationAction or AcceptEventAction actions in activities is the preferred way
of modelling communication, using this approach suffers from several problems.
As a remedy, UML4SOA adds specific support for the requirements of service
communication: Firstly, actions are explicitly marked as sending, receiving, or
replying. Secondly, we add specialised pins for specifying input and output data.
These pins are stereotyped with new icons which precisely show whether data
is sent or received. Finally, the partner service an action relates to is attached
to an action in a new pin. An UML4SOA diagram replacing the pure UML
diagram from section 1.4.1 is shown in figure 2.1.

Figure 2.1: eUniversity Case Study: Communications in UML4SOA

As usual in the UML, we employ operation specifications for referencing
which functionality is invoked in an interaction. In the case of services, these
operations are specified in interfaces or classes used as types of the �Service�
or �Request� ports of SoaML. We distinguish:

� service invocations (e.g. reportThesisStart), for which we define the
new stereotypes �Send� and �Send&Receive� for invoking an action
without or with an expected return information. A service invocation is an
interaction with a named partner, in which an operation is called, which
may, as usual, have parameters and return types.

� service receives (e.g. acceptTopic), for which we define the new stereo-
type�Receive�. A service receive is a point where a behaviour waits for
an incoming call from a partner, receiving an operation invocation which
may, again, have parameters.

� Finally, we add the notion of service replies, which are used to answer a
call previously received from a certain partner, and add the new stereotype
�Reply� for this notion. As usual in UML, a reply ends a previous
invocation.

Each of the service actions may have associated pins which are again stereo-
typed with UML4SOA stereotypes. They are used to specify the following
information:

2.1. DESIGN CONSIDERATIONS 19

� a �Lnk� (link) pin specifies the partner for an operation (i.e., the port
through which messages are sent or received, for example student or
eoffice in the example above),

� a �Rcv� (receive) pin denotes where received information is stored. In
general, this will be a variable (studentId and thesis in the example
above),

� a �Snd� (send) pin denotes the information to be sent as part of a
call (the variable contents of the thesis variable in the example above).
Besides the contents of variables, such data may also be generated on-the-
fly (for example, by string concatenation).

More information about the data handling syntax is given in 2.1.4.

2.1.2 Events and Compensation

Handling long-running transactions in the SOA world has two major require-
ments. First of all, it should be possible to query a long-running service for its
status or other information, which is additional work the service has to carry
out in addition to the normal behaviour. Secondly, successfully completed work
might need to be undone in a customised way (transaction rollback).

The first issue is handled in UML4SOA by means of event handlers, which
allow the specification of optional behaviour occurring in parallel to the main
work of a service. The second issue is handled by means of compensation han-
dlers, which allow attaching roll-back behaviour to a certain action or set of
actions of a process definition. An example of both is shown in figure 2.2, the
counterpart of figure 1.4 in UML4SOA.

As the figure shows, UML4SOA introduces a grouping concept — the�Ser-
viceActivity� — to which specialised edges for event and compensation han-
dling can be attached.

Firstly, the figure shows how to attach compensation handling to an area in
UML4SOA (top half). We use a specialised edge�Compensation�, indicating
that compensation handling is available for a certain area. In the example, the
complete Registration activity can be rolled back by executing the action in
the CompensationHandler activity. By attaching these actions to the area to
be compensated, we only need to specify them once, and they are defined in
close context to their counterpart.

With regard to events, UML4SOA includes a specialised �Event� edge to
attach an event handler to a certain area. In the example, an event handler is
attached to the InProgress activity. This means that during the waiting time
for any number of updateStatus calls or a final finished call, a getStatus call
might come in and is answered. In general terms, an event is a message which
might be accepted during the run of a certain element in the workflow, asking
— for example — for status information or for cancellation. The �Event�
edge allows us to specify such events in an easy and readable way.

20 CHAPTER 2. THE UML4SOA PROFILE

Figure 2.2: eUniversity Case Study: Long-Running Transactions in UML4SOA

2.1.3 Self-Describing Protocols

UML4SOA orchestration specifications are complemented by protocols assigned
to the ports of the SoaML participant. A port protocol always describes actions
of the �Participant� — either actions provided to clients or actions invoked
on or expected from partners.

As noted in the previous section, the definition of protocol state machines
in UML [OMG10b] allows referencing operations implemented by the context
classifier. An important part of service behaviour, on the other hand, is sending
out calls to partner services; these operations are used by context classifiers.
UML4SOA thus extends the ability of PrSMs to include triggers with a Send-

OperationEvent event. It is important to note that this event is not an effect
of a transition; rather; it is an observed operation call of the participant the
classifier of the PrSM is attached to.

As already discussed in section 2.1.3, it is again beneficial to tag the indi-
vidual parts of a PrSM to clarify the semantics of UML4SOA protocols. The
following actions may be observed in a service protocol:

� The receipt of an invocation is observed as a (UML) ReceiveOperation-
Event. UML4SOA adds a special transition with this constraint with the

2.1. DESIGN CONSIDERATIONS 21

�Receive� stereotype.

� A service invocation is observed as a (UML) SendOperationEvent. UML-
4SOA adds a special transition with this constraint with the �Send�
stereotype.

� As noted above, a service invocation might be a reply to a previous
�Receive�. For clarity, this is modelled separately in UML4SOA, al-
though we observe again a (UML) SendOperationEvent. The UML4SOA
stereotype for a service reply transition is �Reply�.

� Finally, a protocol may also need to specify the fact that a reply is ex-
pected from a partner in response to a previous�Send�. The UML4SOA
stereotype for an expected reply transition is�ReceiveReply�; the event
used is again a ReceiveOperationEvent.

A matching UML4SOA diagram for figure 1.3 is shown in figure 2.3.

Figure 2.3: eUniversity Case Study: Protocols in UML4SOA

The protocols specified at the ports of a �Participant� must match the
behaviour of the orchestration. Furthermore, clients and partners must be com-
patible with the given protocol for the system to work correctly.

2.1.4 Data Handling

Services in a real-world environment are about data: Whether from user input,
databases, or as a result of a lengthy calculation, data needs to be handled
within services and received via or sent over the network. This holds especially
true for service orchestrations, part of whose job is the distribution of data.

The SoaML profile [OMG09] already defines the static aspects of data han-
dling with the �MessageType� stereotype, which tags data classes without
behaviour to be used in operation calls. In UML activities, certain actions such
as ReadVariableAction or AddVariableValueAction are available for dealing
with data. In the interest of both readability and usefulness, UML4SOA re-
places these with a simple data manipulation language on top of message types,
which allows assignments of (parts of) data and manipulations such as simple
mathematical operations or string concatenation. It is important to note that

22 CHAPTER 2. THE UML4SOA PROFILE

this language is not an action language; its sole purpose is the specification of
data manipulation statements.

A syntax for data handling is relevant in three parts of UML4SOA specifi-
cation:

� Variables. (UML) variables hold the data of the service. A variable is
referred to in UML4SOA receive pins (for storing data) and in send pins
(for data to be sent out).

� Guards. A guard (for example on an outgoing edge from a decision node)
may contain a boolean condition which might reference data from one of
the variables.

� Explicit Data Operations. Finally, sometimes using on-the-fly data han-
dling is not enough; for example, when performing complex copy oper-
ations between input and output operations. UML4SOA introduces a
specific action for these transactions.

The UML4SOA data handling language is a strongly typed language built on
primitive data types and the message types defined in the SoaML model part.
Inspired by the Java syntax, the language reads like pseudo code and matches
the overall abstraction layer of UML4SOA. An example for three different ex-
pressions in this language is shown in listing 1.

Listing 1: UML4SOA Data Handling Example

String currencies;

currencies= convert.from + ”-” + convert.to

::Main.conversionInfo= currencies

The first line declares a variable currencies with the well-known UML type
String. The second line assigns a field of a variable convert concatenated with
the constant string “-” concatenated with another field of convert to curren-

cies. The third line assigns currencies to an existing variable conversion-

Info which resides in an enclosing element called Main.

In general, a UML4SOA �Rcv� pin contains what is usually regarded as
the left-hand side of an expression, i.e. the specification of where to store data.
This will normally be some variable which, if it does not exist, is implicitly
created in UML4SOA. A �Snd� pin may contain what is usually regarded
as the right-hand side of an expression, i.e. a complete statement including
mathematical or string operations.

Regarding more complex data operations, UML4SOA adds a new action for
data handling with the stereotype �Data�, which may contain statements for
declaring variables and manipulating data.

2.2. THE UML4SOA META-MODEL 23

2.2 The UML4SOA Meta-Model

In this section, we define the UML4SOA meta-model which forms the basis for
the UML4SOA profile. The meta-model is closely based on the UML meta-
model and in particular, UML activities and protocol state machines.

The two figures 2.4 and 2.5 on pages 24 and 25 show the complete meta-
model. Grey classes are taken from the UML while white classes are newly
defined in UML4SOA. Note that some classes appear twice for layouting pur-
poses.

The two figures can be grouped into four areas. In the first, the top shows
the main structuring element of UML4SOA (ServiceActivityNode) along with
actions and edges for specifying compensation and data. We shall discuss these
in section 2.2.1. The bottom of this figure shows the protocol extensions, which
we discuss last (section 2.2.4).

In the second figure, the service communication actions are shown, which
are linked to data pins on the bottom. We shall discuss the pins first in sec-
tion 2.2.2, afterwards using them in the definition of the communication actions
in section 2.2.3.

2.2.1 Structuring Elements

Structuring service behaviour diagrams is important not only for readability,
but for being able to handle events and compensation in a straightforward way.
As discussed in the last section, UML4SOA introduces the structuring concept
of ServiceActivityNodes, to which event and compensation handlers can be
attached. Compensation handlers can later be invoked by using specialised
actions.

ServiceActivityNode

Description

A ServiceActivityNode represents either

1. a special Activity for service behaviour, or

2. a grouping element for actions and other ServiceActivityNodes (top-
level, and nested)

A ServiceActivityNode may have control edges connected to it, and pins
when merged with CompleteActivities or on specialisations in CompleteStruc-
turedActivities. The execution of any embedded actions may not begin until
the ServiceActivityNode has received its object and control tokens. The avail-
ability of output tokens from the structured activity node does not occur until
all embedded actions have completed execution. Note that completion waits for
already running event handlers.

24 CHAPTER 2. THE UML4SOA PROFILE

Figure 2.4: UML4SOA Meta-Model (Structures and Protocols)

2.2. THE UML4SOA META-MODEL 25

Figure 2.5: UML4SOA Meta-Model (Actions and Pins)

26 CHAPTER 2. THE UML4SOA PROFILE

In addition to both Activity and StructuredActivityNode, a Service-

ActivityNode node may have attached event and compensation handlers. An
event handler may be executed at any time during the execution of the Ser-

viceActivityNode, running in parallel to the ServiceActivityNode. Event
handlers may be invoked multiple times. A compensation handler, on the other
hand, defines behaviour to be executed to undo the work of a successfully com-
pleted ServiceActivityNode. Note that if no compensation handler is defined
for a ServiceActivityNode, a default handler with a �CompensateAll� ac-
tion is assumed.

Furthermore, interrupting edges may halt execution at any time (as already
defined in the UML class InterruptibleActivityRegion).

A top-level service activity is attached to a SoaML �Participant� and
defines the behaviour of the �Participant� across all service- and request
ports.

Generalisations

� StructuredActivityNode

� InterruptibleActivityRegion

� Activity

Associations

� eHandler : EventEdge[0..*]
An event edge leading to an event handler for this activity.
{subsets outgoing}

� eventBase : EventEdge[0..*]
An event edge leading to another activity for which this activity is an
event handler.
{subsets incoming}

� cHandler : CompensationEdge[0..1]
A compensation edge leading to a compensation handler for this activity.
{subsets outgoing}

� compensated : CompensationEdge[0..1]
A compensation edge leading to another activity for which this activity is
the compensation handler.
{subsets incoming}

Constraints

1. If a compensation handler is specified, the target element must have this
element as the compensated element.

2. If event handlers are specified, each of them must have this element as the
eventBase element.

2.2. THE UML4SOA META-MODEL 27

Notation

As a ServiceActivityNode comes in two versions, there are two notations.

1. StructuredActivityNode notation: the ServiceActivityNode is drawn
with a dashed round cornered rectangle enclosing its nodes and edges, with
the stereotype notation �ServiceActivity� at the top. Also see children
of StructuredActivityNode.

2. Activity notation: Same notation as for activities applies; as before, the
�ServiceActivity� stereotype must be used.

Examples

The following examples show the use of a service activity. The activity on the left
contains one action with the stereotype �Send�, which in turn contains three
pins. The service activity is annotated with the�ServiceActivity� stereotype,
and carries a name (Registration). On the right, an action for invoking the
activity without displaying the internals is shown.

CompensationEdge

Description

A CompensationEdge is an edge connecting a ServiceActivityNode to be com-
pensated with the one specifying a compensation. It does not model a normal
control flow — instead, it indicates an association between a (main) service
element and a compensation handler. Execution of a compensation handler is
triggered with a CompensateAction or a CompensateAllAction.

Exceptions thrown during a compensation handler must be handled in the
invoking ServiceActivityNode, or in a handler attached to the compensation
handler.

Generalisations

� ActivityEdge

Associations

� compensated : ServiceActivityNode[1..1]
The service activity which is compensated.

28 CHAPTER 2. THE UML4SOA PROFILE

{subsets source}

� cHandler : ServiceActivityNode[1..1]
The service activity specifying the compensation actions.
{subsets target}

Constraints

The compensated element must have this element as the compensation handler.
A compensation edge may only be attached to a service activity.

Notation

The edge is annotated with the stereotype �Compensation�.

Examples

This example shows the use of a �ServiceActivity�-typed compensation han-
dler. An ordinary �ServiceActivity� registers a student for a graduation cel-
ebration event. Later on, if the student fails to graduate, the compensation
handler is invoked to unregister the student.

EventEdge

Description

An EventEdge is an edge connecting event handlers with a ServiceActivityN-

ode during which the event may occur. It does not model a normal control flow
— instead, it indicates an association between a (main) service element and an
event handler.

Execution of an event handler is triggered externally by means of a call, or
a timed event. An event handler may be executed zero, one, or multiple times
in parallel to the service element it is attached to.

Note that only one instance of a specified event handler is active at the same
time.

Generalisations

� ActivityEdge

2.2. THE UML4SOA META-MODEL 29

Associations

� eventBase : ServiceActivityNode[1..1]
The service activity to which an event handler is attached.
{subsets source}

� eHandler : ServiceActivityNode[1..1]
The service activity specifying an event handler.
{subsets target}

Constraints

The event base element must have this element as an event handler. An event
edge may only be attached to a service activity.

Notation

The edge is annotated with the stereotype �Event�.

Examples

This example shows the use of a �ServiceActivity�-typed event handler. The
event handler is installed in parallel to the InProgress activity, and allows to
retrieve the status of the service with a call (getStatus). This happens in
parallel to the InProgress activity.

30 CHAPTER 2. THE UML4SOA PROFILE

CompensateAction

Description

The CompensateAction invokes the compensation handler for a particular Ser-
viceActivityNode, whose name is given in the body of the action and which
must be nested inside the service element the handler in which the Compensate-
Action is specified in is attached to.

A CompensateAction may only be invoked from an exception or compensa-
tion handler. After the compensation handler of the given ServiceActivityN-

ode has been executed, the instance is removed (uninstalled) from the referenced
node, and the execution resumes normally after the CompensateAction.

Generalisations

� OpaqueAction

Associations

� compensationTarget : ServiceActivityNode[1..1]
The ServiceActivityNode to be compensated.

Constraints

� The CompensateAction may only be used within a compensation or ex-
ception handler.

� The compensationTarget must be a ServiceActivityNode which has a
compensation handler, and that ServiceActivityNode must be nested
within the ServiceActivityNode in which the compensation action is
invoked.

Notation

Annotation with stereotype �Compensate�. The target name is given inside
the body of the action.

Examples

This example shows the use of the compensate action. In this example, the com-
pensation handler of Registration is invoked by means of a �Compensate�
action.

2.2. THE UML4SOA META-MODEL 31

CompensateAllAction

Description

The CompensateAllAction invokes all installed compensation handlers which
are nested in the ServiceActivityNode to which the handler the Compensate-

AllAction is specified in is attached to.

A CompensateAllAction may only be invoked from an exception or com-
pensation handler. It starts compensation of all inner ServiceActivityNodes
of the ServiceActivityNode the exception- or compensation handler the action
is defined in is attached to.

The inner ServiceActivityNodes with compensation handlers are compen-
sated in reverse order of their completion, i.e. the last completed ServiceActiv-

ityNode first. However, this applies only if the ServiceActivityNodes are on
the same level; inside the compensation handlers which are started in reverse
order, the inner compensated ServiceActivityNodes compensation handlers
might not necessarily run in (global) reverse order (they do in local reverse
order).

After the compensation handlers have been executed, the instances are re-
moved (uninstalled) from their respective ServiceActivityNodes, and the ex-
ecution resumes normally after the CompensateAllAction.

Generalisations

� OpaqueAction

Associations

None.

32 CHAPTER 2. THE UML4SOA PROFILE

Constraints

The CompensateAllAction may only be used within a compensation or excep-
tion handler.

Notation

Annotation with stereotype �CompensateAll�.

Examples

In this example, two service activities are present. Each has an attached com-
pensation handler. The first is installed after the Graduation activity completes;
the second after JobPoolEnlisting. Both can potentially be invoked with the
�CompensateAll� call if an exception is caught in the Main scope.

DataAction

Description

A DataAction is an action for data manipulation, for example, declaring vari-
ables and manipulating them (assignments, calculations, etc.). The DataAction
allows the specification of arbitrarily many statements, written in the domain-
specific UML4SOA expression language (see Sect. 2.4).

2.2. THE UML4SOA META-MODEL 33

Generalisations

� OpaqueAction

Associations

None.

Constraints

No additional constraints.

Notation

A DataAction is stereotyped with �Data�. The statements to be executed
are given inside the body.

Examples

This example shows a data action. In the action, a string-typed variable is
declared (conversion). Afterwards, conversion is assigned by using two fields
of the request variable, a string (“ to ”), and the string concatenation operator
“+”.

2.2.2 Pins

This section lists the pin classes of UML4SOA, which are used in service in-
teractions for denoting partners as well as received and sent calls. The pin
meta-classes are shown at the bottom of figure 2.5.

LinkPin

Description

A LinkPin is used to indicate the partner service for the service interaction. As
a partner service is indicated through the ports of the participant to which the
main ServiceActivityNode is attached to, the LinkPin is bound to a port. At
runtime, an instance of the port is dynamically provided at LinkPins.

Note that for LinkPins referencing Request ports, a partner must be bound
before execution by external means. For Service ports, incoming calls trigger
creation of a new port instance which is given in the LinkPin.

34 CHAPTER 2. THE UML4SOA PROFILE

Generalisations

� InputPin

Associations

� port : Service xor Request[1..1]

Constraints

� The port must be attached to the class which the root ServiceActivity-
Node of this behavioural specification belongs to.

Notation

The pin is stereotyped with �Lnk�, or with the corresponding icon (“lnk”).
The port name is specified along with the pin.

Examples

This example shows the use of a LinkPin. In all partner-related actions, for ex-
ample in this�Send�, the port at which the operation is requested or received
must be specified.

In the example, the port is a �Service� port of the corresponding partici-
pant which carries the name eoffice.

InteractionPin

Description

An InteractionPin serves as the common abstract base class of SendPin and
ReceivePin, restricting their type to either MessageType or PrimitiveType.

Generalisations

� Pin

Associations

� (inherited association from supertype) : MessageType xor
PrimitiveType[1..1]
{subsets type}

2.2. THE UML4SOA META-MODEL 35

Constraints

The type must be a subtype of either MessageType or PrimitiveType.

Notation

None.

SendPin

Description

A SendPin is used in send actions to denote the data to be sent to an external
service. A SendPin specifies data to be transmitted. Arbitrary right-hand side
expressions specified in the UML4SOA expression language may be used.

Generalisations

� InputPin

� InteractionPin

Associations

No additional associations.

Constraints

The type must be a subtype of either MessageType or PrimitiveType. Also,
the SendPin must have the correct type for the operation and partner invoked.

Notation

The SendPin must be stereotyped with�Snd�, or with the corresponding icon
(“snd”). Furthermore, it needs to be annotated with the information about data
to be sent. In UML, pins are ordered, which cannot directly be shown in the
diagram. As a convention, UML4SOA send pins should be denoted on the
right-hand side of an action from top to bottom.

Examples

This example shows the use of two SendPins; this means that the operation used
(reportThesisStart) requires two parameters. The first send pin specifies the
variable student; the second the variable thesis.

36 CHAPTER 2. THE UML4SOA PROFILE

ReceivePin

Description

A ReceivePin is used in receive actions to denote the place where the data re-
ceived from an external service is stored (i.e., a variable, or a part of a variable).

Generalisations

� OutputPin

� InteractionPin

Associations

No additional associations.

Constraints

The type must be a subtype of either MessageType or PrimitiveType. Also, the
ReceivePin must have the correct type for the operation and partner invoked.

Notation

The ReceivePin must be stereotyped with �Rcv�, or with the corresponding
icon (“rcv”). Furthermore, it needs to be annotated with the information about
where to store the received data.

In UML, pins are ordered, which cannot directly be shown in the diagram.
As a convention, UML4SOA send pins should be denoted on the right-hand side
of an action from top to bottom.

Examples

This example shows the use of ReceivePins. There are three receive pins; each
for one of the parameters of the createThesis call. Each pin contains the target
where the data will be stored; in this case, these are all variable names.

2.2.3 Communication Actions

Having introduced structuring elements and pins for data handling, we can now
discuss the specialised actions for communication in UML4SOA. These actions
are displayed on the top of figure 2.5.

2.2. THE UML4SOA META-MODEL 37

ServiceInteractionAction

Description

ServiceInteractionAction is the common base class of all service interaction
actions which have an associated LinkPin. The interaction is linked to a partner
(i.e. a certain port) of the behaviour via the link pin (see section 2.2.2 for more
information on LinkPins). The operation is specified in the actions themselves.

Generalisations

None.

Associations

� partner : LinkPin[1..1]
Specifies the partner of this ServiceInteractionAction. In case of a
ServiceSendAction, this association subsets target.

Constraints

No additional constraints.

Notation

No notation.

ServiceSendAction

Description

A ServiceSendAction is an action that invokes an operation of a target service
without expecting a return value. The argument values are data to be trans-
mitted as parameters of the operation call. CallOperationAction contains the
operation directly.

ServiceSendAction inherits argument from InvocationAction. We re-
strict this to SendPins which contain the data to be sent.

Generalisations

� CallOperationAction

� ServiceInteractionAction

Associations

� (inherited association from supertype) : SendPin[0..*]
{subsets argument}

38 CHAPTER 2. THE UML4SOA PROFILE

Constraints

� ServiceSendAction constrains argument (inherited from InvocationAc-

tion) to pins of type SendPin.

� target is constrained to instances of LinkPin.

Notation

A ServiceSendAction is stereotyped with �Send�. The operation name is
given inside the action body.

Examples

This example shows a send. An operation call is sent to the partner attached
to the port eoffice (specified in the link pin). The data to be sent is stored
in two variables: student and thesis (specified in the send pins). There is no
return value.

ServiceReceiveAction

Description

A ServiceReceiveAction is an accept call action representing the receipt of
an operation call from an external partner. No answer is given to the external
partner.

A ServiceReceiveAction blocks until the specified operation call is re-
ceived. It requires a trigger (with a CallEvent event), which contains the
operation. According to the operation, appropriate ReceivePins must be given
which contain the variables in which the incoming data is stored.

Note that there is a caveat involved with attaching, through the superclass
ServiceInteractionAction, a LinkPin to a ServiceReceiveAction. The for-
mer is an InputPin, while the second is an AcceptCallAction. Unfortunately,
the UML superstructure defines a constraint on AcceptEventAction (the di-
rect superclass of AcceptCallAction, prohibiting the use of InputPins on this
class. This will be further discussed in section 2.5.

Generalisations

� ServiceInteractionAction

� AcceptCallAction

2.2. THE UML4SOA META-MODEL 39

Associations

� (inherited association from supertype) : ReceivePin[0..*]
{subsets result}

Constraints

The result pins must be ReceivePins. This ensures that the data received has
value or message types. The trigger must be a CallEvent.

Notation

A ServiceReceiveAction is stereotyped with �Receive�. The operation
name (from trigger → CallEvent) is given inside the action body.

Examples

This example shows a receive. A call is received from a partner (called tutor,
specified in the link pin). The data is stored in three variables (thesisId,
title, and description (specified in the receive pins). The operation invoked
is called createThesis.

ServiceReplyAction

Description

ServiceReplyAction is an action that accepts a return value and a value con-
taining return information produced by a previous ServiceReceiveAction.
The reply action returns the values to the request port of the previous call,
completing execution of the call.

ServiceReplyAction is a specialised version of ReplyAction for the service-
oriented context. The inherited attribute replyValue is subset to point to
instances of SendPin, instead of a generic input pin, thereby ensuring the data
can be interpreted as value data. Thus, a ServiceReplyAction sends back data
to a request port for which previous data was received.

Generalisations

� ReplyAction

� ServiceInteractionAction

40 CHAPTER 2. THE UML4SOA PROFILE

Associations

� (inherited association from supertype) : SendPin[0..*]
{subsets replyValue}

Constraints

The replyValue pins must be of type SendPin.

Notation

A ServiceReplyAction is stereotyped with �Reply�. The operation name is
given inside the action body (corresponding to the operation inside the attached
trigger).

Examples

This example shows a reply. A reply is always an answer to a previous receive,
and carries the same partner and operation name as the receive. In this example,
a getStatus call is received from partner tutor, and the single parameter is
stored in the variable thesisId. Now, some processing takes place. Afterwards,
the data in the variable result is sent as a reply to the tutor partner.

ServiceSend&ReceiveAction

Description

A ServiceSend&ReceiveAction action is a complete operation call execution
with a partner. Some data (stored in the SendPins) is sent, then the action
waits for data to be sent back, which is stored in the ReceivePins.

Generalisations

� ServiceSendAction

� ServiceReceiveAction

2.2. THE UML4SOA META-MODEL 41

Associations

None.

Constraints

No additional constraints.

Notation

A ServiceSend&ReceiveAction is stereotyped with �Send&Receive�. The
operation name is given inside the action body.

Examples

This example shows a �Send&Receive�. An operation is invoked on the part-
ner tutor (specified in the link pin). The data itself is stored in the variable
thesisId (specified in the send pin) and must be initialised before the action.
The return value from the service is stored in the element grade of the variable
thesis (specified in the receive pin).

2.2.4 Protocols

This section lists specialised transitions for denoting send, receive, and reply
operations of a participant a UML4SOA protocol state machines belongs to.

ReceiveTransition

Description

A specialised transition indicating that an operation call is received by the
participant to which the protocol state machine is attached to.

Generalisations

� ProtocolTransition

Associations

None.

42 CHAPTER 2. THE UML4SOA PROFILE

Constraints

The trigger of this transition must be a ReceiveOperationEvent. Furthermore,
the event must reference an operation implemented in the port type the PrSM
is attached to.

Notation

Annotation with stereotype �Receive�.

Examples

This example shows a �Receive� in a protocol state machine. The example
contains two states, started and working. In the started state, the operation
call acceptTopic is expected, which leads the PrSM to the working state.

SendTransition

Description

A specialised transition indicating that an operation is invoked without return-
ing information by the participant to which the protocol state machine is at-
tached to. The operation invoked must be specified in a required interface of
the classifier the protocol state machine is attached to.

Generalisations

� ProtocolTransition

Associations

None.

Constraints

The trigger of this transition must be a SendOperationEvent. Furthermore,
the event must reference an operation implemented in an interface used in the
port type the PrSM is attached to.

2.2. THE UML4SOA META-MODEL 43

Notation

Annotation with stereotype �Send�.

Examples

This is an example for using a send transition. Two states are used: start

and posted. In the start state, the participant may choose to send out the
postToBoard call; in this case, the PrSM is advanced to the posted state.

ReplyTransition

Description

A specialised transition indicating that a previous operation call is being replied
to by the participant to which the protocol state machine is attached to.

Generalisations

� ProtocolTransition

Associations

None.

Constraints

The trigger of this transition must be a SendOperationEvent. The event must
reference an operation implemented in the port type the PrSM is attached to.

Notation

Annotation with stereotype �Reply�.

Examples

This is an example for using a reply transition. At the beginning, the PrSM is
in the statusRequest state. Here, the participant may choose to reply to the
getStatus call. The PrSM is advanced to the running state.

44 CHAPTER 2. THE UML4SOA PROFILE

ReceiveReplyTransition

Description

A specialised transition indicating that an operation call is received by the
participant to which the protocol state machine is attached to, and that this
receive is in response to a previous send originating from this participant.

Generalisations

� ProtocolTransition

Associations

None.

Constraints

The trigger of this transition must be a ReceiveOperationEvent. The event
must reference an operation implemented in the port type the PrSM is attached
to.

Notation

Annotation with stereotype �ReceiveReply�.

Examples

This example shows a �ReceiveReply� in a protocol state machine. The ex-
ample contains two states, assessing and finished. In the assessing state,
a reply to the operation getAssessment is expected, which leads the PrSM to
the finished state.

2.2. THE UML4SOA META-MODEL 45

OptionalTransition

Description

OptionalTransition is a specialised transition indicating that the operation
given as part of this transition (specified with�Send�,�Receive�,�Receive-
reply� or �Reply�) is optional, i.e. may or may not be supported by an
implementation of this protocol.

Generalisations

� ProtocolTransition

Associations

None.

Constraints

The transition must also be annotated with �Send�, �Receive�, �Receive-
reply�, or �Reply�.

Notation

Annotation with stereotype �Optional�.

Examples

This is an example for using an optional send transition. If the PrSM is in the
state posted, the participant may choose to send the unregisterFromGradua-

tion call, leading to the state undone.

46 CHAPTER 2. THE UML4SOA PROFILE

2.3 From Meta-Model to Profile

As indicated at the beginning of chapter 2, the aim is defining a lightweight
extension of the UML in the form of a profile. In the previous section, we
have defined a meta-model for UML4SOA; we now map the meta-classes and
attributes of this meta-model to stereotypes and tag definitions.

As a UML profile, UML4SOA defines a profile package whose meta-model
reference-element is the UML, and which additionally imports the stereotypes
from the SoaML profile (see figure 2.6).

Figure 2.6: UML4SOA Profile Package

The following figures will each show several meta-classes and their mapping
to stereotypes. The notation is as follows:

� UML meta-classes, which are extended by the stereotypes of the UML4-
SOA profile, are shown in gray.

� Stereotypes of the UML4SOA profile are shown in yellow. Note that
these may only extend UML meta-classes, which is shown by the extension
arrows.

� Finally, as a reference, the UML4SOA meta-classes are shown in white. A
�mapsTo� relation between a stereotype and an UML4SOA meta-class
gives the intuition of which stereotype represents which meta-class; this
notation is not defined in the UML.

We attach a specific semantic meaning to the �mapsTo� relationship: If a
stereotype maps to a UML4SOA meta-class, it is subject to the same constraints
regarding inherited associations. For example, the meta-class ServiceSend-

Action requires that all arguments must be SendPins; this is transferred to the
�Send� stereotype.

Note that the stereotypes are defined with an uppercase letter; by contrast,
the application of a stereotype uses a lowercase letter. This style is in line with
section 18.3.8 (Stereotypes) of the UML superstructure (see [OMG10b]).

2.3. FROM META-MODEL TO PROFILE 47

Figure 2.7: UML4SOA Stereotypes for Structuring Classes

Structuring Classes

We begin with the structuring classes of the UML4SOA meta-model. Figure 2.7
shows the mapping of these classes of the UML4SOA meta-model to the stereo-
types of the UML4SOA profile.

The most important stereotype is�ServiceActivity�, which corresponds to
the ServiceActivityNode meta-class. The �Compensation� and �Event�
stereotypes are based on ActivityEdge and correspond to the Compensation-

Edge and EventEdge meta-classes of UML4SOA. Note that we do not define tags
here; the relationship between base elements and compensation/event handlers
is given through the standard meta-attributes of ActivityEdge; constraints
apply as per definition in the UML4SOA meta-classes ServiceActivityNode

and ActivityEdge.

In the lower section of the figure, three stereotypes for actions are defined,
namely �Compensate�, �CompensateAll� and �Data�. They correspond
to the meta-classes CompensateAction, CompensateAllAction and DataAc-

48 CHAPTER 2. THE UML4SOA PROFILE

tion, respectively. The first of these needs a tag definition: The �Comp-
ensate� stereotype must be tagged with the target service activity to be com-
pensated.

Communication Classes

We continue with classes used for communication, i.e. the various sending and
receiving actions as well as pins for specifying partners and data. Figure 2.8
shows the mapping of the corresponding meta-classes to stereotypes.

Figure 2.8: UML4SOA Stereotypes for Communication Classes

On the top, the stereotypes �Snd� and �Rcv� are defined; both with
an optional icon for displaying a pin graphically. The first stereotype maps to
the SendPin meta-class, thus inheriting the requirement that the type of the
pin must be either a MessageType or an PrimitiveType; the second stereotype
likewise maps to the ReceivePin meta-class.

In the second row, the stereotype �Lnk� is mapped to the meta-class
LinkPin. Note that we need to define an additional tag here, specifying which
port of the corresponding participant is referenced.

The�Reply� stereotype in the second row and the�Receive�,�Send�,
and �Send&Receive� stereotypes in the third row are used for tagging com-
municating actions. They correspond to the ServiceReplyAction, Service-

2.3. FROM META-MODEL TO PROFILE 49

ReceiveAction, ServiceSendAction and ServiceSend&ReceiveAction meta-
classes, respectively. No tag definitions are required, however, once again, con-
straints apply.

Protocol Classes

Finally, we get to the last five stereotypes of the UML4SOA profile, which
concern the specification of service protocols and are shown in figure 2.9.

Figure 2.9: UML4SOA Stereotypes for Protocol Specification

We have seen three of the stereotypes listed here before; they are used
for both activities and protocol state machines. As expected, the �Send�
stereotype maps to the SendTransition meta-class, �Receive� maps to the
ReceiveTransition meta-class, and �Reply� maps to the ReplyTransition

meta-class. Furthermore, the�ReceiveReply� stereotype maps to the Receive-
ReplyTransition meta-class and the �Optional� stereotype maps to the
OptionalTransition meta-class.

No further tag definitions are required, though it is worth noting that the
communicating stereotypes inherit a constraint on the trigger allowed on a
stereotyped transition. By contrast, the �Optional� stereotype is only used
for tagging the transition.

The UML4SOA profile is thus complete and can be used in arbitrary, profile-
enabled UML modelling tools.

50 CHAPTER 2. THE UML4SOA PROFILE

2.4 Data Handling

An important point in modelling service behaviour and service orchestrations
is data handling. Data is received by services, manipulated, and then sent on
or back to another service. We have devised a declarative, textual language for
this purpose, which aims to closely match the level of detail of UML4SOA. A
major goal of the UML4SOA data handling language was to be generic enough
to be understandable on the modelling level, yet contain enough information
to allow transformation to more lower-level languages for execution. The main
requirements for a UML4SOA data handling language is support for data in
messages sent in-between services, and variables for storing such data, which
requires:

� Support for primitive and complex (composite) data types.

� Typing of and access to variables, including assignments and partial as-
signments.

� Basic operations for manipulation data.

The UML4SOA data handling language is strongly typed and based on UML
primitive types as well as classes annotated with the �MessageType� stereo-
type from the SoaML profile, which are in effect data types (i.e., classes without
behaviour). Data is modified by imperative statements which may be used in
three distinct areas within UML4SOA models:

� Pins. While receive pins may only hold variable references or (implicit)
variable declarations, send pins may also be used to construct new data
on-the-fly.

� Guards. A guard may contain a boolean-typed UML4SOA expression.

� Data Handling Actions. When inline data handling in pins or guards is
not possible, data handling statements can also be added explicitly with
a �Data� action.

Usually, services and service orchestrations directly work on structured data,
i.e. �MessageType�-typed classes which carry the business-relevant informa-
tion. The UML4SOA data handling language provides built-in support for these
data types, although some restrictions apply:

� A data type may only be assembled from primitive types or other struc-
tured data types.

� Inheritance is allowed, but again only amongst structured data types.

� Associations between structured data types is possible with the exception
of bidirectional associations.

2.4. DATA HANDLING 51

The data manipulation language supports both sets and lists (unordered and
ordered associations). Furthermore, operations on basic data types is supported
(mathematical operation on integers and reals; logical operations on booleans,
and concatenation on strings).

2.4.1 Syntax Used

Whenever a concrete syntax is described in this document, we display it the same
manner as in the Java Language Specification [GJSB05]. We use a context-free
grammar, i.e. a number of productions with a nonterminal symbol on the left
and both terminals and non-terminals on the right:

Listing 2: Context-Free Grammar Example

Element :
execute(AnotherElement)

We denote nonterminal symbols with italics, and terminal symbols with bold
font. A definition of a nonterminal is given by the nonterminal suffixed with a
colon (:), as shown for Element in the example. For Element, the right-hand side
consists of the terminal symbol execute followed by the terminal symbol for
an opening brace ((), the non-terminal AnotherElement, and another terminal
symbol, the closing brace ()).

In general, the right-hand side of a non-terminal definition consists of one
or more lines which form the possible alternatives. An example is the following
definition:

Listing 3: Denoting Alternatives

Elements:
Element
Elements Element

This definition of Elements introduces two alternatives: Either the non-
terminal Element, or Elements again, followed by a single Element. This def-
inition is recursive, as Elements occurs both left and right of the colon. Note
that if a line is too long to fit on the page, we let it continue indented below.

We introducing a special suffix (opt) for specifying an optional element.
Consider the following example:

Listing 4: Optional Elements (1)

Element :
execute(AnotherElement) OtherElementsopt

In this definition of Element, OtherElements may optionally be specified
after the main execute definition. This is a shortcut for

52 CHAPTER 2. THE UML4SOA PROFILE

Listing 5: Optional Elements (2)

Element :
execute(AnotherElement)
execute(AnotherElement) OtherElements

Finally, we define three special non-terminals:

� String, which identifies a sequence of arbitrary characters,

� Number, which identifies a sequence of characters in the range of [0-9],

� and VarName, which identifies a sequence of letters and numbers, where
the first character must be a letter.

This concludes the introduction of the syntax notation.

2.4.2 Grammar

We start with the declaration of a statement and preliminaries:

Listing 6: UML4SOA Data Handling Syntax

DataHandling :
Statement

Statement :
Declaration
Assignment

Declaration is used to declare the type of a variable. To denote an ordered
or unordered list, the corresponding brackets ([] or {}) can be appended to the
type:

Listing 7: UML4SOA Data Handling Syntax: Declarations

Declaration:
Type Identifier ;

Type:
VarName ([]opt | {}opt)

Identifier :
VarName

An Assignment is an expression for assigning a value to a variable. It is split
between a left-hand-side (left of the assignment operator) and a right-hand-side
(right of the assignment operator):

2.4. DATA HANDLING 53

Listing 8: UML4SOA Data Handling Syntax: Assignments

Assignment :
LeftHandSideExpression := RightHandSideExpression;

Left-hand sides are, in effect, references to variables or elements within vari-
able types. A variable in UML4SOA has a declaring scope, which is the service
activity it was first used or declared in. If the scope of a variable is not the cur-
rent one, it may be given with the ::ServiceActivityName syntax. Furthermore,
not only a variable can be referenced but also a part within the variable, which
must be a publicly accessible field of a �MessageType�.

Listing 9: UML4SOA Data Handling Syntax: Left-Hand Sides

LeftHandSideExpression:
(::VarName.)opt VarAccess

VarAccess:
VarName (.VarAccess)opt

Right-hand sides are more complex as they can be used not only in assign-
ments, but also in conditional statements; furthermore, they contain the com-
plete syntax for data manipulation and calculations. RightHandSideExpression
is defined by starting with a conditional or, which has the least precedence, and
continuing until we reach the basic literals and qualifiers.

Listing 10: UML4SOA Data Handling Syntax: Right-Hand Sides (1)

RightHandSideExpression:
ConditionalOrOperation

ConditionalOr :
ConditionalAnd (|| ConditionalAnd)opt

ConditionalAnd :
Equality (&& Equality)opt

Equality :
Relational ((== | !=) Relational)opt

54 CHAPTER 2. THE UML4SOA PROFILE

Listing 11: UML4SOA Data Handling Syntax: Right-Hand Sides (2)

Relational :
Additive ((> | >= | <= | <) Additive)opt

Multiplicative:
PrefixedUnary ((∗ | / | %) PrefixedUnary)opt

PrefixedUnary :
(− | !) Unary

Evaluating right-hand sides starts from the bottom to the top, i.e. the pre-
fixed unary literals - and ! have the highest precedence, while the conditional
or || has the lowest.

Before we can define the literals, we have to take care of the unary elements
referenced above. A unary element is either a literal, a left-hand-side expression,
or a right-hand-side expression in parenthesis.

Listing 12: UML4SOA Data Handling Syntax: Unary Elements

Unary :
Literal | LeftHandSideExpression | ParenthesisExpression

ParenthesisExpression:
(RightHandSideExpression)

Finally, we can define the literals, which are simple numbers, string con-
stants, boolean constants, or the special value null.

Listing 13: UML4SOA Data Handling Syntax: Literals

Literal :
StringLiteral | NumberLiteral | BooleanLiteral | null

StringLiteral :
”String”

NumberLiteral :
Number (. Number)opt

BooleanLiteral :
true | false

As usual, this grammar allows a few constructs which are not legitimate
from a semantic point of view. For example, comparing a string with a boolean
using the Equality construct makes no sense in a strongly typed language. We

2.4. DATA HANDLING 55

believe, however, that these cases are intuitively clear and thus do not require
further lengthy discussion.

2.4.3 Using the data language

Three of the non-terminal elements of the UML4SOA data language can be used
as top-level elements in expressions inside of UML4SOA models:

� The DataHandling statement is intended to be used in �Data� actions.
A �Data� action may contain an arbitrary number of data handling
statements.

� LeftHandSideExpressions and Declarations may be used in �Rcv� pins.
The first is used to specify an already existing variable in which the data
received is to be placed. The second can be used as a shortcut for the
modeller; it both declares the variable and specifies it for the received
data.

� In �Snd�-Pins, entire RightHandSideExpressions can be used. This al-
lows creating data on-the-fly. In this case, it is convenient to think of a
remote message invocation as a distributed assignment.

Figure 2.10: UML4SOA Data Manipulation: Simple Example

An example of using simple data types, assignment operations, and basic
operation on numbers and strings is shown in figure 2.10. First, a variable
is declared on-the-fly in a �Rcv� pin of the �Receive� action calculate;
the variable is called n and is typed with the well-known UML type Integer.
Second, a data handling action is used which executes four statements:

� The variable r is declared with the UML type Real,

56 CHAPTER 2. THE UML4SOA PROFILE

� r is assigned the expression n / 3,

� the variable s is declared with the UML type String,

� s is assigned the expression r + " Percent".

Finally, the reply action uses the on-the-fly right-hand expression "Calcu-

lated " + s to add an additional string before r, the result of which is then
sent back to the invoker.

As indicated above, the UML4SOA data language also provides extensive
support for dealing with structured data types, which are tagged with �Mes-
sageType� in SoaML. An example of three structured data types is shown in
figure 2.11: a Thesis object may reference a Student and a Tutor.

Figure 2.11: UML4SOA Data Manipulation: Structure Types

Working with the instances of the Thesis class in UML4SOA can take ad-
vantage of these associations. Figure 2.12 shows an example where both the
tutor and the student association ends are set in a single data action.

Figure 2.12: UML4SOA Data Manipulation: Structure Example

To sum up, adding a data handling language to UML4SOA has the benefits
of being able to specify data operations on the UML level of abstraction. With
its low complexity and easy-to-use syntax, the language is a good match for the
UML4SOA graphical language and enables transformation to code.

2.5. CHANGES TO THE UML 57

2.5 Changes to the UML

Specifying service behaviour in UML introduces some key new requirements
for a modelling language which was originally designed with object-oriented
systems in mind. The SoaML profile [OMG09] has already shown how to mould
the UML to include SOA concepts, which has led to the proposal of adding the
concept of conjugation to the UML.

Within UML4SOA, we have identified the need for two additional changes
to the UML to enable developers to model SOA behaviour in a natural and
straightforward way. In the following, we revisit these changes already intro-
duced in the previous sections.

Adding an InputPin to AcceptCallAction

UML4SOA uses the UML meta-class AcceptCallAction with the stereotype
�Receive� for denoting a place where service behaviour waits for an incoming
call through a port of the corresponding participant. As has been discussed
above, the concrete port must be specified as part of the action to indicate the
partners from which a call is to be expected. UML4SOA has introduced the
�Lnk� stereotype for this purpose, which is attached to the UML meta-class
InputPin, as the partner information is an input to the receiving action.

Unfortunately, the UML superstructure [OMG10b] contains a restriction
on AcceptEventAction, which is a superclass of AcceptCallAction, which
prevents the use of input pins on instances of this class.

UML4SOA requires that this restriction is relaxed to allow pins which carry
additional information for the receiving action, which, in our case, is a�Lnk�-
stereotyped InputPin specifying the port the operation attached to the trigger
of the action is received on.

Allowing Call Observations in PrSMs

Transitions in UML Protocol State Machines [OMG10b] are based on the meta-
class ProtocolTransition. This class contains two important restrictions.
First, the effect association must be empty, i.e. a protocol transition may
not have associated actions. Second, as a subclass of Transition, a protocol
transition may include a trigger. There are two restrictions on this trigger:

� First, the specification of ProtocolTransition includes the requirement
that if a call trigger is used, the operation referenced should apply to the
context classifier of the state machine of the protocol transition.

� Second, the specification states that non-call events may be used on pro-
tocol transitions, but again refers to incoming events whose target is the
context classifier.

We believe that in the context of service protocol specification, this restric-
tion should be lifted to be able to observe events which originate from the

58 CHAPTER 2. THE UML4SOA PROFILE

context classifier instead of using it as a target. In fact, a corresponding UML
meta-class for this concept exists: SendOperationEvent specifies that a call
invocation request is sent to an object (at which it may result in the occurrence
of a call event).

As sending out calls to partner services requires being able to note this
fact in a protocol, we believe that it should be possible to also reference op-
erations which are used by the context classifier of a protocol state machine.
UML4SOA thus extends the ability of PrSMs to include triggers with a Send-

OperationEvent event. It is important to note that this event is not an effect
of a transition; rather; it is an observed operation call of the participant the
classifier of the PrSM is attached to.

This ability is restricted in UML4SOA to transitions stereotyped with
�Send� or �Reply�.

2.6 UML4SOA/Open and UML4SOA/Strict

In this section, we introduce two dialects of UML4SOA: One serves modellers
interested in having maximum freedom in applying UML4SOA in combination
with the UML, while the other serves modellers interested in code generation
and formal analysis.

On the one hand, UML as a graphical language is great for communication
between people. For this use case, the focus lies on readable diagrams, which
tend to focus on the overall architecture of a system and ignoring low-level
details. Some of the diagram types of UML, for example use case diagrams, are
explicitly geared towards this usage, but with a sufficient level of abstraction
this method is applicable to all modelling elements. UML4SOA can be used for
this purpose: UML4SOA/Open defines a dialect which contains no restrictions
on how UML elements and UML4SOA elements may be used and combined in
models, only requiring the constraints in chapter 2 to hold.

On the other hand, model-driven software approaches build on generating
code from models. To enable such code generation, the semantics of the models
must be specified more precisely, which in general requires more detail and
stricter rules for placing elements in the model. Again, some diagram types in
UML are better suited for this purpose, for example state machines and activity
diagrams, but once more there are also methods for generating i.e. tests from
use case diagrams. UML4SOA can be used for this purpose as well: UML4-
SOA/Strict defines a set of rules for modellers to follow which enables formal
analysis and code generation.

UML4SOA/Open

The purpose of UML4SOA/Open is to give maximum freedom to software mod-
ellers. For this reason, no additional constraints apply — UML4SOA elements
may be freely mixed with UML activity and state machine model elements, fully
exploiting the means of specifying models with UML.

2.6. UML4SOA/OPEN AND UML4SOA/STRICT 59

UML4SOA/Strict

By contrast, UML4SOA/Strict defines a set of rules which must be followed
to create compliant UML4SOA activity and state machine models usable for
generation of code and the specification of a formal semantics.

� A UML4SOA/Strict model must be based on a SoaML �Participant�
with �Service� or �Request� ports. Each port must have a port type
stereotyped with �ServiceInterface� which may include operations (ei-
ther directly or inherited) and declare usage relationships to other types.
Each operation may have multiple in and return parameters; out and
inout parameters are not allowed.

� All UML4SOA activities must be stereotyped with �ServiceActivity�
and attached to a �Participant�. The only actions allowed in an UML-
4SOA activity diagram are the actions stereotyped with UML4SOA stereo-
types with the one exception of RaiseExceptionAction. All communi-
cating actions must reference an operation (either directly or through a
trigger) from one of the port types of the corresponding participant.

� For controlling the workflow, decision and merge nodes as well as fork
and join nodes may be used. However, the resulting model must be well-
nested, i.e. all paths from a decision node not ending in a flow-final or
activity-final node must end in a merge node. The same goes for fork and
join nodes. Loops can (as usual) be modelled using fork and join nodes;
however, the looping (back) link may not carry any additional actions.
Each service activity must have an identifiable start node, i.e. either an
action without incoming links or a dedicated start pseudo node.

� The only grouping constructs allowed are UML4SOA service activities.
Handlers (again, service activities) may be attached as usual to service
activities, but interrupting edges are restricted to non-handler service ac-
tivities. Handlers may only be attached to non-handler service activities.

� Each event handler must start with a �Receive� action and end with a
�Reply� action or a RaiseExceptionAction to ensure the event handler
termination is either communicated to the partner, or exception handling
is triggered.

� All data handling statements in �Snd� and �Rcv� pins, guards, and
data actions must follow the syntax and semantics of the UML4SOA data
manipulation language. The only UML primitive types allowed are In-

teger, Boolean, and String; additionally, floating point values may be
declared using a (custom) data type Double, and dates with a (custom)
data type Date.

� The root behaviour of a participant must start with a �Receive� action
to ensure that it can be started from the outside.

60 CHAPTER 2. THE UML4SOA PROFILE

For protocol state machines, the following rules apply:

� Transitions not annotated with a UML4SOA communication stereotype
are allowed, but are assumed to be internal to the protocol and the cor-
responding implementation. They do not follow the usual completion
semantics.

� States may not be nested, i.e. the state and transition structure must be
flat.

� An explicit start pseudo node is required to be present. The usual restric-
tions apply for the start transition.

We believe that besides being a requirement for code generation and for-
mal analysis, these requirements also lead to more readable diagrams and easier
implementation, and thus recommend following the constraints given here re-
gardless of the use of code generation.

2.7 Lifecycle Management

A SoaML participant with its accompanying service and request ports and UML-
4SOA activities models a single instance of an orchestration execution. The
owned behaviours (UML4SOA service activities) each model one execution of
the orchestration; the port protocols (UML4SOA PrSMs) each model an obser-
vation of the interaction with a partner during the lifetime of the orchestration
(provided or requested).

However, in client/server and SOA computing, an orchestration is normally
executed multiple times, often in parallel. In UML4SOA, we do not require
the developer to model this bootstrapping mechanisms as it is normally not
of interest to the modeller. Handling of multiple workflows, including instance
matching, is done implicitly in UML4SOA designs as follows (cf. figure 2.13).

Generic <<Service>>

Generic <<Service>>

Concrete <<Service>>

Concrete <<Service>>

Concrete <<Request>>

Concrete <<Request>>

Generic
<<Participant>>

Concrete
<<Participant>>

Figure 2.13: Generic and Concrete Participants

A concrete UML4SOA participant (i.e. the version modelled by a user) is
not instantiated directly on system startup. Instead, one can imagine that a

2.7. LIFECYCLE MANAGEMENT 61

generic version of the participant is implicitly created and instantiated. The
generic version has as many �Service� ports as the concrete one — these are
generic �Service� ports, which each provide and accept only one operation
again and again, which corresponds to the first accepted operation in the con-
crete�Service� port PrSM. On startup of the generic participant, the generic
ports wait for incoming calls. Once a message is received, a new instance of the
concrete participant along with its ports is instantiated by the generic partici-
pant and the startup message is passed to the corresponding concrete port.

All non-startup communication is done directly with the concrete instances
of the participant and its ports. To ensure instance matching, the port instances
are provided to the workflow via the �Lnk� pins.

Finally, instance matching, i.e. routing messages to the appropriate port
and thus instances of UML4SOA activities, requires some information (like an
ID) as part of the message with which the system can route a message to the
appropriate port (and thus workflow) instance. This information is assumed to
be added transparently to the incoming and outgoing messages of the workflow
based on the unique IDs associated with each port instance.

Each service action in UML4SOA service activities has a�Lnk� pin which
carries the information about the instance of the port which is in use for this
particular orchestration instance. This information is used to match calls to
and from the correct workflow instance.

62 CHAPTER 2. THE UML4SOA PROFILE

Chapter 3

Modelling Examples

In this chapter, we will detail how the thesis management scenario from the
eUniversity case study from the Sensoria project has been modelled with UML-
4SOA, and give some pointers to other examples.

3.1 Modelling the eUniversity Case Study

In chapter 1, we have introduced the static (SoaML) model of the eUniversity
case study (Figure 1.2 on page 11). Now, after having discussed the UML4-
SOA profile and its extensions for activities and protocol state machines, we
can add the behaviour of the ThesisManagement participant and the protocols
of its ports. In the following, we use the UML4SOA/Strict dialect for both the
activity and the PrSM models.

The UML4SOA activity describing the behaviour of the ThesisManagement

participant is shown in figure 3.1. From top to bottom, the behaviour is as
follows:

� The orchestration begins with a �Receive� action, requiring a client to
send the createThesis call via the service port tutor. A thesis object is
expected and placed in the newly declared thesis variable.

� Afterwards, the process starts with its Main activity and another receive
operation: acceptTopic allows a student to start working on the the-
sis. Attached to Main is an exception handler which catches the Thesis-

FailedException. It contains one action, namely a �Compensate� call
with the target activity Registration.

� Having completed acceptTopic, the Registration activity is entered.
Here, we first inform the examination office about the newly started thesis,
and secondly register the student for a seat in the graduation gala. This is
a classic example of how certain parts of a workflow complete successfully
but may need to be undone later on; therefore, the Registration scope

63

64 CHAPTER 3. MODELLING EXAMPLES

has an attached compensation handler CompensateRegistration which
undoes the reservation of a seat in the gala (this happens if the thesis is
not accepted).

� Finally, the tutor is notified that a student has accepted the thesis and is
now working on it.

� Now that the thesis is in progress, we enter the InProgress activity, which
starts with a loop. In this loop, the student is allowed to send updates
by using the updateStatus call via the student port until the thesis is
complete, in which case he sends a finished call.

� During this time, which is potentially quite long, the tutor might want to
request updates. Therefore, the InProgress activity has an event handler,
StatusInformation, which contains the receive action getStatus to be
used by the tutor for retrieving the current status of the thesis.

� Once the finished call has been received, the assessment is requested
from the tutor using getAssessment, which is reported to the student.
In case the thesis was finished successfully, this information is reported to
the examination office and the process ends. If not, a failure is reported
and an exception thrown, which leads, via the compensate activity in the
ExceptionHandler, to unregistering the student from the gala.

As the ThesisManagement participant uses four ports — two service port
and two request ports — we define four UML4SOA protocol state machines for
specifying the externally visible protocol of the participant.

Figure 3.2 shows the protocols of the ThesisManagement participant. From
top left to bottom right, these are the student protocol, the eoffice protocol,
the bboard protocol, and the tutor protocol.

Student Protocol

The protocol provided to the student allows receipt of the acceptTopic call.
Once received, the protocol is in working state, allowing the receipt of either the
updateStatus call, which leads back to working, and finished, which requests
the process to finished (being replied to with �Reply� finished).

EOffice Protocol

The protocol of the examination office begins with the ability to send a report-

ThesisStarted call, indicating that a student has started a thesis. In the
subsequent state working, the thesis is either reported as being successfully
completed with reportThesisSuccess leading to the success state, or having
failed, in which case we receive a reportThesisFailure which leads to the
failed state.

3.1. MODELLING THE EUNIVERSITY CASE STUDY 65

Figure 3.1: eUniversity Case Study: Thesis Manager Activity

66 CHAPTER 3. MODELLING EXAMPLES

Figure 3.2: eUniversity Case Study: Protocol Specification

3.2. OTHER EXAMPLES 67

Graduation Protocol

The graduation service protocol is rather simple — the TutorManagement par-
ticipant expects to be able to send a registerForGraduation call to the grad-
uation service, and it might — using the �Optional� stereotype — also need
to unregister the student with unregisterFromGraduation.

Tutor Protocol

Finally, the tutor protocol is another protocol provided by the ThesisManager.
The participant first expects a postThesis message from the tutor. Once a
student has chosen the thesis, the tutor is informed with the thesisInProgress
call. Now, the tutor may send getStatus calls for retrieving the status of
the thesis, for which he must be able to receive a reply. Finally, once the
getAssessment call is sent to the tutor, he must send back the assessment with
the getAssessment call.

3.2 Other Examples

Besides the thesis management scenario of the eUniversity case study, UML4-
SOA has also been used for several other scenarios from different case studies
within the Sensoria project.

� In the context of the eUniversity case study, another scenario has been
modelled with UML4SOA, which revolves around a student application to
an online university.

� From the automotive case from the Sensoria project, several scenarios
have been modelled in UML4SOA, the most elaborate of which is the
roadside assistance scenario.

� Finally, the finance case study and its credit request scenario have been
modelled with UML4SOA.

An overview of these scenarios is given in [EGK+10]. Furthermore, the
Sensoria web site www.sensoria-ist.eu contains tutorials and downloads for
each of these case studies.

www.sensoria-ist.eu

68 CHAPTER 3. MODELLING EXAMPLES

Chapter 4

Summary

This document has introduced the UML4SOA profile, a lightweight extension of
the UML for modelling the behaviour and the protocols provided and required
of participants in service-oriented architectures.

In chapter 1, we have discussed the need for an extension for service be-
havioural modelling in the UML due to insufficient representation of key service
concepts such as communicating actions, long-running transactions, and self-
descriptions in activities and protocol state machines.

Chapter 2 has then introduced the UML4SOA meta-model and, subse-
quently, the profile. According to the main aim of the definition of the UML4-
SOA profile — minimalism and conciseness — we have defined additions to the
UML for both activities and PrSMs, while reusing existing UML constructs such
as structured activities, actions, and control structures such as fork or decision
nodes.

This chapter has also discussed a lightweight data manipulation language
for guards, actions, and pins in UML4SOA, which enables the modeller to stay
on the same level of abstraction as in the rest of UML4SOA. Finally, in order to
accommodate different usage scenarios of UML4SOA, the two dialects UML4-
SOA/Open and UML4SOA/Strict have been introduced. The former focuses on
maximum expressiveness and integration with existing UML constructs, while
the latter adds a set of constraints for ensuring unambiguous models ready for
code generation and analysis.

Finally, Chapter 3 has shown a practical example of how to model with
UML4SOA in the form of diagrams for the eUniversity case study of Sensoria.
More examples can be found in [EGK+10].

69

70 CHAPTER 4. SUMMARY

Bibliography

[EGK+10] Jannis Elgner, Stefania Gnesi, Nora Koch, , and Philip Mayer. Spec-
ification and Implementation of Demonstrators for the Case Studies,
chapter 7.1. Springer Verlag, 2010.

[GJSB05] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java
Language Specification. Addison Wesley, 2005.

[H0̈7] Matthias Hölzl. D8.4a: Distributed E-University Management and
E-Learning System: Requirements modelling and analysis of se-
lected scenarios. Deliverable for the eu project sensoria, reporting
period october 2006 - september 2007, SENSORIA Project 016004,
2007.

[OMG09] OMG (Object Management Group). Service oriented architecture
Modeling Language(SoaML), Beta 2. Technical report, OMG (Ob-
ject Management Group), 2009.

[OMG10a] OMG (Object Management Group). Unified Modeling Language:
Infrastructure, version 2.3. Technical report, OMG (Object Man-
agement Group), 2010.

[OMG10b] OMG (Object Management Group). Unified Modeling Language
Superstructure. Specification, OMG (Object Management Group),
5 2010. http://www.omg.org/spec/UML/2.3/Superstructure/.

71

http://www.omg.org/spec/UML/2.3/Superstructure/

	Extending UML for Service Behaviour
	Motivation
	Case Study
	Modelling the Case Study
	Requirements for UML4SOA
	Communication Actions
	Long-Running Transactions
	Self-Descriptions

	The UML4SOA Profile
	Design Considerations
	Service Interactions and Partners
	Events and Compensation
	Self-Describing Protocols
	Data Handling

	The UML4SOA Meta-Model
	Structuring Elements
	Pins
	Communication Actions
	Protocols

	From Meta-Model to Profile
	Data Handling
	Syntax Used
	Grammar
	Using the data language

	Changes to the UML
	UML4SOA/Open and UML4SOA/Strict
	Lifecycle Management

	Modelling Examples
	Modelling the eUniversity Case Study
	Other Examples

	Summary

